A Brief Review on Particle Swarm Optimization: Limitations & Future Directions
نویسنده
چکیده
Particle swarm optimization is a heuristic global optimization method put forward originally by Doctor Kennedy and Eberhart in 1995. Various efforts have been made for solving unimodal and multimodal problems as well as two dimensional to multidimensional problems. Efforts were put towards topology of communication, parameter adjustment, initial distribution of particles and efficient problem solving capabilities. Here we presented detail study of PSO and limitation in present work. Based on the limitation we proposed future direction.
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملOPTIMAL DESIGN OF ARCH DAMS FOR FREQUENCY LIMITATIONS USING CHARGED SYSTEM SEARCH AND PARTICLE SWARM OPTIMIZATION
In recent years, the importance of economical considerations in the field of dam engineering has motivated many researchers to propose new methods for minimizing the cost of dames and in particular arch dams. This paper presents a method for shape optimization of double curvature arch dams corresponding to minimum construction cost while satisfying different constraints such as natural frequenc...
متن کامل3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm
Optimization of the volume/weight in the gear train is of great importance for industries and researchers. In this paper, using the particle swarm optimization algorithm, a general gear train is optimized. The main idea is to optimize the volume/weight of the gearbox in 3 directions. To this end, the optimization process based on the PSO algorithm occurs along the height, length, and width of t...
متن کاملA survey of swarm intelligence for dynamic optimization: Algorithms and applications
Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimizat...
متن کاملA Review of Convergence Analysis of Particle Swarm Optimization
Particle swarm optimization (PSO) is a population-based stochastic optimization originating from artificial life and evolutionary computation. PSO is motivated by the social behavior of organisms, such as bird flocking, fish schooling and human social relations. Its properties of low constraint on the continuity of objective function and ability of adapting to the dynamic environment make PSO b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013